- or, Finding the Fun in Regular Expressions

Who Am I?

GNU/Linux hobbyist (occasional zealot) nearly 20 years
Unix-y professional nearly 10 years

Language nerd

- Double majored in German and Theological Languages (Koine Greek,
Biblical Hebrew, Latin)

- Dabble in just about any programming language
Musician

How Will We Learn to Enjoy Regex?

—

Learn the Rules of the Game
Learn Composition Strategies
Explore the Unique POSIX Utilities
Play Around With Real Examples

= BN e

Rules of the Game

N

o O1 b W

—r e e o

POSIX is enough!

Read the fine manual

a) Basic vs Extended regex
Characters

Repeaters

Anchors

Groups

Rules of the Game POSIX is enough!

POSIX regular expressions are practically ubiquitous

Perl-compatible regular expressions (PCRE) are effectively
a superset of POSIX, and a dramatically more complicated

superset!

PCRE satisfies a need, but learn to walk before you run

Rules of the Game Read the Fine Manual

Human Readable Manual:

man grep

Engineer Readable Manual:

man / regex

Rules of the Game Read the Fine Manual

Since 1992, POSIX.2 defines both basic and extended
regex. That distinction will be important.

https://standards.ieee.org/standard/1003_2-1992.html

Rules of the Game Characters

Strictly speaking, we take each atom at a time. In practice,
an atom is a character (group), optionally iterated, and
optionally bound. Characters can be:

Explicit, i.e. the character itself
Any, i.e. .

Bracketed, i.e. a set of characters
Classed

Rules of the Game Characters
Bracketed characters can be explicit sets or ranges. Negation
occurs with the carat (V).
For example:

- [A-Za-z0-9]

- [aeiou]

- ["eq8-]

Rules of the Game Characters

Character classes are technically bracketed characters,
defined in man 3 wctype.

- Personally, | find them finicky and avoid them unless they’ll
be a lifesaver.
- But I've been using basic regex. YMMV.
- Based on locale
- Syntax is [[:space:]] and not [:space:]

Rules of the Game Characters

Notable character classes:

- blank: space or tab

- graph: printable character EXCLUDING space
- print: printable character INCLUDING space

- punct: printable character EXCLUDING alnum
- space: whitespace, including newline variants
- xdigit: hexadecimal

Rules of the Game Repeaters

Repetition operators, which take effect on preceding atom:

?: occurs once or not at all

. occurs zero or more times
+: occurs one or more times
{n}: occurs n times exactly
{n,m}. occurs n to m times

Implementations may offer variations. For instance, GNU.

Rules of the Game Repeaters

In basic mode, some repetition operators® need to be escaped
with a backslash. All the more reason to favor extended mode!

\? \+ \{n\} \{n,m\}

Spoilers, parantheses also require the backslash in basic
mode:

\(sub-expression\)

Rules of the Game Anchors

Anchors align to positions in the line

- /. beginning of the line
- $:end of the line

Rules of the Game Groups

Groups (or “sub-expressions”) are identified within
parantheses, which can be nested. All the aforementioned
rules are available within the group, with the addition of the
alternation pipe | (or “logical OR” as | remember it)

- (shelhelthey)
- ([:digit:]}{1,3\.?){4}

Rules of the Game Groups

Groups can be back-referenced positionally. While the manual
page recommends against this, it can be a powerful
technique.

echo "Hadley, Jonathan" | sed -E 's/(.*), (.*)/Hi, \2 \1/'

Like all powerful techniques, however, it easily becomes
difficult to maintain, so it is wise to use it sparingly.

Composition Strategies

This is where the puzzles begin

- Character by character
- Group by group
- Location! Location! Location!

Composition Strategies Character by Character

- Consider each character in sequence
- Select the most restrictive character possible
- Case, character class, explicit set
- Consider possible permutations for the given character
- Might the first letter be capitalized?
- Could there be zero padding?
- Whitespace?

Composition Strategies Group by Group

- What makes the target unique?
- Sub-/patterns within the target
- Regular number of similar characters
- Limited number of variations?
- ldentify least common denominators on those
variations

Composition Strategies (Location!)(3}

- Line anchors can be a valuable shortcut
- If the target is challenging to isolate, more regular
surrounding text can be leveraged
- Form data like XML or JSON with name/value pairs or
other regular field separation
- Retrieve the targeted data by back-reference
- Reduce target “surface” by limiting the region
- Common utilities offer addressing or line ranges

POSIX Utilities

Core tools for regular expression

- grep
- sed
- awk

grep < sed < awk

POSIX Utilities grep

“Print lines that match patterns”

The most Unix Way™ of the regex utilities
- Favor egrep (or grep -E) to utilize extended mode

POSIX Utilities grep

Helpful core options:
-e additional patterns
-0 print only what matches

-v invert match

POSIX Utilities grep

Options to “reduce target ‘surface’:
-A n print n lines after pattern match
-B n print n lines before pattern match

-C n print n lines circling pattern match

POSIX Utilities sed

“Anything grep can do, sed can do better”
Equivalent to grep: sed -n ‘/RE/p’

Beyond the text replacement for which sed is (almost
exclusively) famous, addresses are a powerful tool, allowing
for acutely targeted transformations! One rarely, if ever, needs
to pipe grep into sed

POSIX Utilities

sed addressing:

Line numbers
[regex/
first™step

$ (last line)

sed

sed ‘5,10 s/aggravated/excited!/’
sed -E ‘/#/ s/#[[:blank:][?XXX/#/’
sed ‘0¥2 a\Add third line pattern’
sed ‘$ a\Copyright 2019 -jrh’

POSIX Utilities sed

Basic vs. Extended and sed

- All implementations support basic mode

- Likely all modern implementations support some of
extended mode with the option -E (GNU certainly does)

- Unless extended mode is enabled, some special
characters need backslashes!
sed ‘s:\([0-9]\{3\)\):\1.\1.\1:” vs sed -E ‘s:([0-9)}{3}):\1.\1.\17

POSIX Utilities awk

“Anything sed can do, awk can do... awkwardly?”
Equivalent to grep: awk /RE/{print}

The two-fold strength of awk is its flexibility with field
separators and contextual action. This is useful well beyond
rigidly structured data!

It's really a language in itself, which is its strength and
weakness

POSIX Utilities awk

“Pattern scanning and processing language”

pattern { action }

Patterns can be;

- Regex against whole string ($0, the default target)
- Regex against targeted field
- Explicit expressions, e.g. $3=="Jonathan’

POSIX Utilities awk

Pattern examples:
awk ‘/10\./ {print}
awk ‘$2~/10\./ {print)
awk ‘$3=="Susie” {print)

awk ‘$3!="Susie” {print)

POSIX Utilities awk

There is an entire language of actions available, all of which
may be appropriate to a given situation.

For our purposes today, the behaviors of {print} will be the
focus, because it follows the uses we’ve been exploring and
accessibly introduces the available syntax.

POSIX Utilities awk

For actions, whitespace is optional - likely helpful to keep
code readable, but not required for syntax.

The following both work:
awk ‘$2 == “jhadley” { print $3 $4, $6 }
awk ‘$2=="jhadley”{print$3%$4,$6)

POSIX Utilities awk

awk ‘$2=="jhadley”{print$3%$4,$6Y}

Here, the comma indicates an output field separator (OFS),
which is a space by default. Without it, all output would follow
without any separation. OFS can be defined, as well:

awk ‘BEGIN{OFS=":"}$2=="jhadley”{print$3%$4,$6}

POSIX Utilities awk

Changing the input field separator (FS) grants a lot of flexibility
with awk!

It also supports explicit strings and extended regex; which lets
us leverage our location/position compositional strategies.

awk -F: ‘$17/d$/{print$1,$7} /etc/passwd
awk -F’: ?” {print$2) some.json

Synthesis

Playing with the available utilities,
piping them one into another, ;
we have a professional puzzle ~\
game we get to play at work!

This is where creativity comes in.

Synthesis Examples - Apache log

10.185.248.71 - - [09/Jan/2015:19:12:06 +0000] 808840 "GET
/inventoryService/inventory/purchaseltem?userld=20253471&itemld=23434300

HTTP/1.1" 500 17 "-" "Apache-HttpClient/4.2.6 (java 1.5)"

Synthesis Examples - ip output

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_Ift forever preferred_Ift forever
inet6 ::1/128 scope host
valid_lIft forever preferred_lIft forever
2: enp4s0fl: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN group default glen 1000
link/ether 1c:b7:2¢:33:44:1f brd ff:ff.ff:ff.ff.ff
3: wip3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP group default glen
1000
link/ether 40:e€2:30:d9:fc:a7 brd ff.ff:ff.ff.ff.ff
inet 192.168.0.111/24 brd 192.168.0.255 scope global noprefixroute wip3s0
valid_lIft forever preferred_lIft forever
inet6 fe80::42e2:30ff:fed9:fca7/64 scope link
valid_Ift forever preferred_Ift forever

