
Solving the Regex Puzzle

- or, Finding the Fun in Regular Expressions

Who Am I?

- GNU/Linux hobbyist (occasional zealot) nearly 20 years
- Unix-y professional nearly 10 years
- Language nerd

- Double majored in German and Theological Languages (Koine Greek,
Biblical Hebrew, Latin)

- Dabble in just about any programming language

- Musician

How Will We Learn to Enjoy Regex?

1) Learn the Rules of the Game
2) Learn Composition Strategies
3) Explore the Unique POSIX Utilities
4) Play Around With Real Examples

Rules of the Game

1) POSIX is enough!
2) Read the fine manual

a) Basic vs Extended regex
3) Characters
4) Repeaters
5) Anchors
6) Groups

Rules of the Game POSIX is enough!

POSIX regular expressions are practically ubiquitous

Perl-compatible regular expressions (PCRE) are effectively
a superset of POSIX, and a dramatically more complicated
superset!

PCRE satisfies a need, but learn to walk before you run

Rules of the Game Read the Fine Manual

Human Readable Manual:

man grep

Engineer Readable Manual:

man 7 regex

Rules of the Game Read the Fine Manual

Since 1992, POSIX.2 defines both basic and extended
regex. That distinction will be important.

https://standards.ieee.org/standard/1003_2-1992.html

Rules of the Game Characters

Strictly speaking, we take each atom at a time. In practice,
an atom is a character (group), optionally iterated, and
optionally bound. Characters can be:

- Explicit, i.e. the character itself
- Any, i.e. .
- Bracketed, i.e. a set of characters
- Classed

Rules of the Game Characters

Bracketed characters can be explicit sets or ranges. Negation
occurs with the carat (^).

For example:

- [A-Za-z0-9]
- [aeiou]
- [^eq8-]

Rules of the Game Characters

Character classes are technically bracketed characters,
defined in man 3 wctype.

- Personally, I find them finicky and avoid them unless they’ll
be a lifesaver.

- But I’ve been using basic regex. YMMV.
- Based on locale
- Syntax is [[:space:]] and not [:space:]

Rules of the Game Characters

Notable character classes:

- blank: space or tab
- graph: printable character EXCLUDING space
- print: printable character INCLUDING space
- punct: printable character EXCLUDING alnum
- space: whitespace, including newline variants
- xdigit: hexadecimal

Rules of the Game Repeaters

Repetition operators, which take effect on preceding atom:

- ?: occurs once or not at all
- *: occurs zero or more times
- +: occurs one or more times
- {n}: occurs n times exactly
- {n,m}: occurs n to m times

Implementations may offer variations. For instance, GNU.

Rules of the Game Repeaters

In basic mode, some repetition operators* need to be escaped
with a backslash. All the more reason to favor extended mode!

\? \+ \{n\} \{n,m\}

Spoilers, parantheses also require the backslash in basic
mode:

\(sub-expression\)

Rules of the Game Anchors

Anchors align to positions in the line

- ^: beginning of the line
- $: end of the line

Rules of the Game Groups

Groups (or “sub-expressions”) are identified within
parantheses, which can be nested. All the aforementioned
rules are available within the group, with the addition of the
alternation pipe | (or “logical OR” as I remember it)

- (she|he|they)
- ([[:digit:]]{1,3}\.?){4}

Rules of the Game Groups

Groups can be back-referenced positionally. While the manual
page recommends against this, it can be a powerful
technique.

echo "Hadley, Jonathan" | sed -E 's/(.*), (.*)/Hi, \2 \1/'

Like all powerful techniques, however, it easily becomes
difficult to maintain, so it is wise to use it sparingly.

Composition Strategies

This is where the puzzles begin

- Character by character
- Group by group
- Location! Location! Location!

Composition Strategies Character by Character

- Consider each character in sequence
- Select the most restrictive character possible

- Case, character class, explicit set
- Consider possible permutations for the given character

- Might the first letter be capitalized?
- Could there be zero padding?
- Whitespace?

Composition Strategies Group by Group

- What makes the target unique?
- Sub-/patterns within the target
- Regular number of similar characters

- Limited number of variations?
- Identify least common denominators on those

variations

Composition Strategies (Location!){3}

- Line anchors can be a valuable shortcut
- If the target is challenging to isolate, more regular

surrounding text can be leveraged
- Form data like XML or JSON with name/value pairs or

other regular field separation
- Retrieve the targeted data by back-reference

- Reduce target “surface” by limiting the region
- Common utilities offer addressing or line ranges

POSIX Utilities

Core tools for regular expression

- grep
- sed
- awk

grep < sed < awk

POSIX Utilities grep

“Print lines that match patterns”

- The most Unix Way™ of the regex utilities
- Favor egrep (or grep -E) to utilize extended mode

POSIX Utilities grep

Helpful core options:

-e additional patterns

-o print only what matches

-v invert match

POSIX Utilities grep

Options to “reduce target ‘surface’”:

-A n print n lines after pattern match

-B n print n lines before pattern match

-C n print n lines circling pattern match

POSIX Utilities sed

“Anything grep can do, sed can do better”

Equivalent to grep: sed -n ‘/RE/p’

Beyond the text replacement for which sed is (almost
exclusively) famous, addresses are a powerful tool, allowing
for acutely targeted transformations! One rarely, if ever, needs
to pipe grep into sed

POSIX Utilities sed

sed addressing:

- Line numbers sed ‘5,10 s/aggravated/excited!/’
- /regex/ sed -E ‘/#/ s/#[[:blank:]]?XXX/#/’
- first~step sed ‘0~2 a\Add third line pattern’
- $ (last line) sed ‘$ a\Copyright 2019 -jrh’

POSIX Utilities sed

Basic vs. Extended and sed

- All implementations support basic mode
- Likely all modern implementations support some of

extended mode with the option -E (GNU certainly does)
- Unless extended mode is enabled, some special

characters need backslashes!
sed ‘s:\([0-9]\{3\}\):\1.\1.\1:’ vs sed -E ‘s:([0-9){3}):\1.\1.\1:’

POSIX Utilities awk
“Anything sed can do, awk can do… awkwardly?”

Equivalent to grep: awk ‘/RE/{print}’

The two-fold strength of awk is its flexibility with field
separators and contextual action. This is useful well beyond
rigidly structured data!

It’s really a language in itself, which is its strength and
weakness

POSIX Utilities awk

“Pattern scanning and processing language”

pattern { action }

Patterns can be:

- Regex against whole string ($0, the default target)
- Regex against targeted field
- Explicit expressions, e.g. $3==’Jonathan’

POSIX Utilities awk

Pattern examples:

awk ‘/10\./ {print}’

awk ‘$2~/10\./ {print}’

awk ‘$3==”Susie” {print}’

awk ‘$3!=”Susie” {print}’

POSIX Utilities awk

There is an entire language of actions available, all of which
may be appropriate to a given situation.

For our purposes today, the behaviors of {print} will be the
focus, because it follows the uses we’ve been exploring and
accessibly introduces the available syntax.

POSIX Utilities awk

For actions, whitespace is optional - likely helpful to keep
code readable, but not required for syntax.

The following both work:

awk ‘$2 == “jhadley” { print $3 $4, $6 }’

awk ‘$2==”jhadley”{print$3$4,$6}’

POSIX Utilities awk

awk ‘$2==”jhadley”{print$3$4,$6}’

Here, the comma indicates an output field separator (OFS),
which is a space by default. Without it, all output would follow
without any separation. OFS can be defined, as well:

awk ‘BEGIN{OFS=”:”}$2==”jhadley”{print$3$4,$6}’

POSIX Utilities awk
Changing the input field separator (FS) grants a lot of flexibility
with awk!

It also supports explicit strings and extended regex; which lets
us leverage our location/position compositional strategies.

awk -F: ‘$1~/d$/{print$1,$7}’ /etc/passwd
awk -F’: ?’ ‘{print$2}’ some.json

Synthesis

Playing with the available utilities,
 piping them one into another,
 we have a professional puzzle
 game we get to play at work!

This is where creativity comes in.

This is where we engineer solutions.

Synthesis Examples - Apache log

10.185.248.71 - - [09/Jan/2015:19:12:06 +0000] 808840 "GET
/inventoryService/inventory/purchaseItem?userId=20253471&itemId=23434300
HTTP/1.1" 500 17 "-" "Apache-HttpClient/4.2.6 (java 1.5)"

Synthesis Examples - ip output

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp4s0f1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
 link/ether 1c:b7:2c:33:44:1f brd ff:ff:ff:ff:ff:ff
3: wlp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen
1000
 link/ether 40:e2:30:d9:fc:a7 brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.111/24 brd 192.168.0.255 scope global noprefixroute wlp3s0
 valid_lft forever preferred_lft forever
 inet6 fe80::42e2:30ff:fed9:fca7/64 scope link
 valid_lft forever preferred_lft forever

